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Mendelian randomization accounting for
complex correlated horizontal pleiotropy
while elucidating shared genetic etiology

Qing Cheng 1,2, Xiao Zhang 2, Lin S. Chen 3 & Jin Liu 2

Mendelian randomization (MR) harnesses genetic variants as instrumental
variables (IVs) to study the causal effect of exposure on outcome using sum-
mary statistics fromgenome-wide association studies. ClassicMRassumptions
are violated when IVs are associated with unmeasured confounders, i.e., when
correlated horizontal pleiotropy (CHP) arises. Such confounders could be a
shared gene or inter-connected pathways underlying exposure and outcome.
We propose MR-CUE (MR with Correlated horizontal pleiotropy Unraveling
shared Etiology and confounding), for estimating causal effect while identi-
fying IVswithCHPand accounting for estimationuncertainty. For those IVs,we
map their cis-associated genes and enriched pathways to inform shared
genetic etiology underlying exposure and outcome. We apply MR-CUE to
study the effects of interleukin 6 on multiple traits/diseases and identify sev-
eral S100 genes involved in shared genetic etiology. We assess the effects of
multiple exposures on type 2 diabetes across European and East Asian
populations.

In the post-genome-wide association study (GWAS) era, many efforts
weremade to step beyond genetic associations towards causation and
mechanistic examinations. Mendelian randomization (MR) assesses
the causal effect of potential risk exposures on outcome traits and
diseases by leveraging genetic variants as instrument variables (IVs)
and integrating existing GWAS summary statistics1. MR has been
widely applied to study the relationships among complex traits and
diseases, and has achieved numerous successes in providing causal
evaluations and suggesting disease prevention and therapeutic
strategies2.

Two-sample MR methods take as input two sets of summary sta-
tistics, IV-to-exposure and IV-to-outcome association statistics, to
estimate the causal effect of exposure on outcome. Since genotypes
are ‘Mendelian randomized’ during meiosis, they are generally not
correlated with external unmeasured confounding factors. Classic MR
methods imposed strong assumptions on the validity of IVs. They
assumed IVs to be associatedwith the exposure (“relevance”); to affect
the outcome only through the exposure (“exclusion restriction”); and

to be unconfounded (“exchangeability”). Figure 1a illustrated the
classic assumptions.However, those assumptions areoften challenged
by the pervasive horizontal pleiotropy — genetic variants affecting
outcome via other pathways than exposure. The presence of hor-
izontal pleiotropy can bias the estimation and confound the causal
inference if not properly handled. Specifically, the ‘uncorrelated hor-
izontal pleiotropy (UHP)’ is a phenomenon where a genetic variant
affects outcome via other pathways not through exposure (see Fig. 1b
left panel for an illustration), and ‘correlated horizontal pleiotropy
(CHP)’ is a phenomenonwhere a genetic variant affects both exposure
and outcome through a heritable shared factor, i.e., an IV being asso-
ciated with unmeasured confounders (see Fig. 1b right panel). In the
recent literature, many robust MRmethods were proposed to relax IV
assumptions and allow for IVs with UHP either by treating those IVs as
outliers3,4, or by accounting for UHP effects in a model of mixture
distributions5–11. Some MR methods12–15 were developed to estimate
and adjust for both UHP and CHP. MRMix12 uses a four-component
mixture model to identify and estimate the causal effect using the
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group of IVs estimated to be valid, without distinguishing the
mechanisms (UHP/CHP) of those invalid IVs. CAUSE13 identifies the IVs
with CHP effects, and estimates the causal effect of exposure on out-
come using IVs estimated to be not affected by CHP. Themethod cML-
MA14 uses a constrained maximum likelihood to draw causal inference
by excluding IVs with either UHP or CHP. Similar to CAUSE and cML-
MA, GRAPPLE15 assumes the CHP effects (i.e., IV-to-outcome via con-
founders) being proportional to IV strengths (i.e., IV-to-exposure via
confounders). The assumption implies that all IVs perturb the whole
confounder set and further affect outcome under a same mechanism,
differing by only IV strengths.

Correlated horizontal pleiotropy is a challenging and frequently
occurring issue inMR analyses.When there is only one confounder, all
IVs with CHP affect the same confounder and the CHP effects of dif-
ferent IVs are proportional to IV strengths. Existing methods13–15 con-
sider and model the shared CHP effect for all IVs. Often for complex
traits and diseases, many genes and pathways (e.g., metabolism,
immune pathways) may affect both exposure and outcome. In this
work, we propose a MR method, MR-CUE (MR with Correlated

horizontal pleiotropy Unraveling shared Etiology and confounding).
MR-CUE accounts for more complex and realistic CHP effects in the
presence of multiple confounders and by leveraging correlated IVs to
boost power. As illustrated in Fig. 1b right panel, for IVs affected by
CHP, we set the effect of IV-to-confounder to be 113, confounder-to-
exposure to be γk, and confounder-to-outcome effect to be αk. When
estimating the causal effect fromexposure onoutcome, CHP induces a
bias and the bias is equal to the shared CHP effect parameter on out-
come, δ = Eðαk

γk
Þ. If unbalanced CHP is present (δ ≠0) and unadjusted,

false positives may arise or power may be reduced. We propose that
the effect of confounder set on outcome can be decomposed into two
parts, αk = δγk + eαk . The first part is the shared confounding effect
across all IVs with CHP and is proportional to the confounders’ effect
on exposure (γk) induced by each IV; and the second part (eαk) captures
how IV-specific perturbation to confounder set may affect outcome,
and is orthogonal to the first part. When there exist multiple con-
founders (Fig. 1c), different IVs may be associated with multiple con-
founders at different strengths, and those IVs perturb the confounder
set differently. For each IV, the ratioαk/γk is a weighted average among

Fig. 1 | Causal diagrams of classic MR and MR-CUE models, with an illustrative
example. a The causal diagram of classic MR models. Classic MR models assume
that IVs affect outcome through only exposure. b An illustration of the MR-CUE
model. MR-CUE decomposes IVs into two sets, those not affected by CHP (left,
ηk =0) and those affected by CHP (right, ηk = 1). MR-CUE allows all IVs to have
potential non-zeroUHP effect, θk. In b right panel, we assume that the IV affects the
exposure and confounder proportionally, with a sum of IV-to-exposure effect of γk.
We rescale the IV-to-confounder effect to be 1 and the effect of confounders on
exposure is then γk (yellow line). The red line represents the decomposed and
projected confounder-to-outcome effect and is also proportional to IV-strength, γk.
The IV-specific perturbation of confounders may induce an IV-specific bias, eαk ,
which has a mean of zero. c, d Illustrations of two scenarios when IV-specific CHP

effects may arise: c there are two or more confounders; d there is a single con-
founder but IVs with different mechanisms are correlated with each other. e An
illustrative example of estimating the causal effect of BMI on TG in the presence
of CHP. f The reverse causation estimation of TG on BMI confounded by CHP.
When estimating the effect of BMI on TG, some IVs (red) are affected by CHP.
Adjusting those IVs would lead to a significant effect estimate of BMI on TG,
β̂1ðBMI!TGÞ =0:262, and an insignificant reverse causal effect estimate from TG to
BMI, β̂1ðTG!BMIÞ =0:008. In this example, CHP would induce IV-associated con-
founders and introduce a significant and negative bias. Using estimated IVs with
CHP, one may obtain significant causal and reverse causal effect estimates,
β̂2ðBMI!TGÞ = � 0:655, and β̂2ðBMI!TGÞ = � 0:443.
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all confounders, and the ratios are not a constant for all IVs.
Additionally, the inclusion of correlated IVs in MR analyses increases
the number of instruments and may boost the power8. When there
are multiple correlated IVs and even if there is only one confounder
(Fig. 1d), the correlations among IVs with different mechanisms
may induce IV-specific CHP effects. The issue is insufficiently addres-
sed in the existing literature when using correlated IVs. Figure 1e, f
shows a real data example in which CHP is present between body
mass index (BMI) and triglycerides (TG). Without properly identifying
and accounting for complicated CHP effects, the effect of exposure on
outcome could be confounded and the estimated causal effect of
outcome on exposure is also non-zero, i.e., reverse causation may
occur. By modeling both the shared CHP and IV-specific CHP effects,
MR-CUE estimates the causal effect and distinguishes it from reverse
causation. Moreover, themodeling of IV-specific CHP effects alleviates
the potential bias in the presence of many weak instruments.

Another feature of MR-CUE is that we propose to further study
sets of IVs estimated to have CHP and examine their cis-associated
genes and involved pathways. In contrast to existing method15, MR-
CUE allows for overlapping genes/pathways. It provides the quantifi-
cation of estimation uncertainty in identifying IVs with CHP and allows
us to further study the sets of IVs estimated to have CHP at different
levels of confidence. Through two examples, we illustrate that the
estimated IVs/variants with CHP can suggest genes and pathways that
are suspected sources of IV-associated confounders. Those genes and
pathways may shed light on the shared genetic etiology for traits and
diseases affected by a common exposure, or may reveal relevant
pathways andmechanisms underlying different causal exposures for a
complex disease outcome. Those disease-relevant common con-
founders and pathways could inform concerted mechanisms and
etiologies across populations and ethnic groups.

Results
MR-CUE examines causal effects by delineating correlated and
uncorrelated horizontal pleiotropic effects
We propose MR-CUE to estimate the causal effect from exposure (X)
on outcome (Y) while accounting for both UHP and CHP. As illustrated
in Fig. 1b, wemodel the IV-to-outcome effect of the k-th IV (k = 1,…, p),
Γk, as a function of IV-to-exposure effect, γk, and pleiotropic effects:

Γk =
β1γk +θk , if k 2 IV Set 1with noCHP

β1γk +θk +αk , if k 2 IV Set 2withCHP,

�
ð1Þ

where β1 is the causal effect of exposure on outcome; θk is the UHP
effect, and αk is the CHP effect of the k-th IV; and both the IV-to-
outcome and IV-to-exposure effects, Γk and γk, respectively, can be
obtained from GWASs. We assume that all IVs may have UHP effects,
θk, while only a proportion of IVsmay also have CHP effects. Following
existing literature13, we rescale the IV-to-confounder effect to be 1 and
the effect of confounders on exposure is then γk. In Fig. 1b (right
panel), the line representing the direct effect from IV to exposure is
omitted to avoid over-parameterization since it is assumed to change
proportionally with IV-to-confounder effect. As discussed before, we
decompose the CHP effect into two components, αk = δγk + eαk ,
representing IV-shared and IV-specific CHP effects. We reparametraize
our model as

Γk =
β1γk +θk , if k 2 IV Set 1with noCHP

β2γk + θk + eαk , if k 2 IV Set 2withCHP,

�
ð2Þ

whereβ2 = β1 + δ is a nuisanceparameter capturing both β1 and δ, and δ
is the IV-shared confounding parameter due to CHP. For IVs in Set 2,
the IV-specific CHP effect, eαk , is assumed to have a Gaussian prior. By
accounting for IV-specific CHP effects (i.e., IV-specific perturbations to
the confounder set), our model is robust to the presence of multiple

confounders without explicitly modeling the effect of each confoun-
der. MR-CUE is built on a Bayesian hierarchical model that estimates
the parameters from the above model and obtains inference via Gibbs
sampling. In Fig. 1e, we illustrate our model using a real data example
to assess the causal effect of BMI on TG. When plotting IV-to-BMI
effects against IV-to-TG effects in Fig. 1e, there is a positive causal
relationship for some IVs (blue)while there are a fewother IVs entailing
a different patternwith anopposite slope (red). The proposedMR-CUE
model identifies the IVs affected by CHP (red dots), and estimates the
causal effect fromBMIonTGusing IVs not affectedbyCHP (blue dots).
The unconfounded causal effect is estimated to be significant and
positive, β̂1ðBMI!TGÞ =0:262. For IVs affected by CHP, their estimated
causal effects is significant and negative, β̂2ðBMI!TGÞ = � 0:655, due to
the large and negative confounding bias δ. As further illustrated in
Fig. 1f,MR-CUE reduces falsepositive findings due to reverse causation
by identifying the IVs affected by CHP and quantifying the uncertainty
in the estimation/identification. Without properly handling CHP, one
may obtain a crude sum of effect estimates combining the uncon-
founded and the confounded effects. In the BMI-TG example, we
observe that the combined effects (red), β̂2’s, for both BMI-to-TG and
TG-to-BMI are significant andnegative, due to the shared confounding.
While the unconfounded effect is only significant from BMI to TG, not
the reverse. In the presence of unadjusted CHP, one may suffer from a
reduced power or an inflated type I error rate depending on the
direction of confounding effect.

In practice, there is often no clear cut for IVs unaffected or
affected by CHP due to trait polygenicity and LD. The uncertainty of
each variant belonging to either IV Set 1 or Set 2 can be accounted for
by modeling a latent variable, ηk. MR-CUE imposes a spike-slab
prior16,17 for eαk , with a spike (mass density) at zero and a slab
spreading over a wide range of plausible values. MR-CUE quantifies
the probability of each variant being affected by CHP. Different than
existing clustering-based methods or methods involving the selec-
tion of IVs estimated to be valid, MR-CUE provides the estimated
probabilities of IVs from Set 1 or Set 2. MR-CUE obtains the causal
effect estimate as a weighted estimator from all IVs weighing by the
posterior probabilities of IVs being from Set 1. With the estimated
probabilities of IVs from Set 2, MR-CUE also works as a useful tool for
further examining the potential shared genetic components under-
lying exposure and outcome. The IVs estimated to have CHP and
their cis-associated genes may imply common genes and genetic
pathways associated with both exposure and outcome. To further
allow IVs in LD, MR-CUE partitions the whole genome into indepen-
dent blocks and introduce a group latent variable, ηl, for IVs in same
blocks (see Methods).

MR-CUE identifies IVs with CHP effects, estimates the causal
effects and reduces false positives
We conducted simulation studies to evaluate the performance of MR-
CUE and compare with existing MR methods in a variety of scenarios.
We first generated genotype matrices from different LD patterns
(Methods section). Both exposure and outcome were simulated based
on polygenic architecture as shown in Eq. (13). In simulations, we
considered both single and multiple confounders (Methods section
andSupplementaryMaterials). All IVs (p = 1000or 2000) contributed a
total heritability of 0.1 to exposure, while the heritability for outcome
can be decomposed as variation through the causal effect (β1), varia-
tion contributed by UHP (θ), and variation attributable to CHP (α). We
controlled the combinatorial values for heritability due to UHP and
CHP, denoted as h2

θ and h2
α , respectively. As discussed earlier, we

assumed that CHP is due to shared genetic components between
exposure and outcome traits and only a proportion of IVs have non-
zero CHP effects. We performed single-variant association tests to
obtain the summary statistics for both IV-to-exposure and IV-to-
outcome associations as input for MR analyses.
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We compared MR-CUE with nine other methods, including
CAUSE13, GRAPPLE15,cML-MA14, RAPS6, IVW18, MR-Egger5, MRMix12, MR-
Clust10, MR-LDP8. In existing literature, other methods including
BESIDE-MR19, JAM-MR20, Berzuini’s method21, and MR-Corr222 have also
been proposed to account for either UHP or CHP. For cML-MA, we
evaluated its performance using its default setting, cML-MA-BIC-DP.
Among those methods, MR-LDP, RAPS, IVW, MR-Egger, and MR-Clust
assumed that no IV/variant is affected by CHP, but allowed IVs to have
UHP effects. The proposed MR-CUE and four other methods, i.e.,

CAUSE, GRAPPLE, cML-MA, andMRMix, allowed IVs to have both UHP
and CHP. Among all competing methods, MR-CUE and MR-LDP can
handle variants in moderate-to-strong LD, and CAUSE allowed for
variants in weak LD.

First, we evaluated the performance of type I error rate control
(Fig. 2a, b) for all competing methods in the scenarios of both single
and multiple confounders. In both scenarios, MR-CUE could sharply
control type I error rates in all settings while CAUSE, GRAPPLE and
cML-MA-BIC-DP had a reasonable control of the type I error rates.

Fig. 2 | Comparison of MR-CUE and other MR methods in simulation studies.
a, b Type I error rates forMR-CUE and othermethods under combinatorial settings
for h2

θ and h2
α with ραγ=0.2 and p = 1000 for single and multiple confounders,

respectively. c,d Powers forMR-CUE andothermethodsunder the setting: h2
θ =0:1,

h2
α =0:05, p = 1000, r =0.4 and ραγ=0.2 for single and multiple confounders,

respectively. e QQ plots of �log10(p-values) for all methods under the null from

analyses of negative controls. f QQ plots of �log10(p-values) for all methods from
analyses of positive controls. The p-values of all methods are two-sided without
multiple testing adjustment. g QQ plots of �log10(p-values) for MR-CUE with cor-
related and independent IVs. The gray regions in e–g indicate 95% confidence
intervals. h ROC curves for evaluation of causation and reverse causality among all
methods.
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CAUSE and GRAPPLE were conservative in many settings while cML-
MA-BIC-DP could control the type I error rate at the expenses of power
reduction (Fig. 2c, d). SinceMR-Clust and MR-LDP did not account for
CHP effects, their type I error rates were inflated. We also observed
inflated type I error rates for MRMix. Simulations for all methods
except for MR-CUE and MR-LDP were based on independent IVs after
SNP clumping, since those methods were initially proposed using IVs
in weak-to-moderate LD. With independent IVs, RAPS, IVW and MR-
Egger could generally control the type I error rates, up to some slight
inflation. We also performed simulations with a larger number of IVs
(p = 2000) and a stronger correlation between IV-to-exposure andCHP
effects,ραγ. The resultswere largely similar, and additional details were
provided in Supplementary Fig. 1. When the correlation in CHP (ραγ)
was stronger, RAPS, IVW and MR-Egger suffered from increased levels
of inflation in the type I error rates. Supplementary Figure 2 compares
the estimation biases of MR-CUE with other methods and shows the
boxplots of point estimates for competing methods.

We compared the power of each method by varying h2
γ while

fixing h2
θ =0:1, h

2
α =0:05, r = 0.4, and ραγ =0.2, with single or multiple

confounders (Fig. 2c, d). MR-CUE achieved the highest power among
the methods that could control the type I error rates. CAUSE, as a
conservative method, was under-powered13 and cML-MA-BIC-DP was
less powerful than MR-CUE. We also considered other simulation set-
tings with different h2

θ, h
2
α , autoregressive coefficient r for LD, and

correlation ραγ in CHP. Resultswere similar, and additional detailswere
provided in Supplementary Figs. 3–6.

Next, we evaluated the performance of MR-CUE in selection/
identification of IVs with CHP effects. MR-CUE provided a quantitative
metric for this purpose.We considered twoprior distributions, i.e., the
default prior (a Beta distribution with shape parameters being 2 and L,
the number of LD blocks) and the non-informative prior, Beta(1,1).
Here, we considered h2

θ =0.02 or 0.05, h2
α =0.05 or 0.1, the correlation

between αk and γk being ραγ =0.2 or 0.8, and causal effect β1 = 0 or 0.1
with p = 1000or 2000. Note thatwhen ραγ =0, onlyUHP is present.We
also considered moderate and strong LD structure (r =0.4, 0.8) with
autoregressive correlation. Supplementary Figure 7 shows the false
discovery rate (FDR) for identifying IVs with CHP effects and Supple-
mentary Fig. 8 shows the corresponding area under the curve (AUC) of
the receiver operating characteristic (ROC) curve. MR-CUE with the
default prior can control the FDR at the nominal level of 0.1 while
achieving a high level of AUC.

We evaluated the performance of MR-CUE and other methods
using real data with negative and positive controls23, with varying IV
selection thresholds. In the analyses of negative control outcomes, we
used self-reported tanning ability and hair color as outcome, since
both traits were largely determined at birth and were unlikely to be
affected by other traits we considered24. We considered 16 complex
traits and diseases (Supplementary Data 1a) as exposure to evaluate
the control of type I error rates forMR-CUE andotherMRmethods. For
each method, we applied five different IV selection thresholds to
evaluate the sensitivity of different methods to IV selection criteria.
Figure 2e shows the quantile-quantile (QQ) plot of negative log base 10
ofp-values forMR-CUEandothermethodswhen IV selection threshold
was 5 × 10−4. MR-CUE and some existing MR methods including
GRAPPLE, cML-MA-BIC-DP, RAPS, IVW and MR-Egger can well control
type I error rates, with p-values falling within the 95% confidence band
of the null distribution. Note that in the analyses of negative control
outcomes, some MR methods without considering CHP performed
well. This was probably because that the outcomes considered were
not polygenic and there was no CHP effects. On the other hand, MR-
LDP had slightly inflated p-values while CAUSE, MRMix, and MR-Clust
had deflated p-values. In the analyses of positive controls, we selected
100 established pairs of traits and diseases with causal relationships
supported by exiting literature. The pairs of exposure and outcome
were listed in Supplementary Data 1b. We also applied different IV

selection thresholds to evaluate the sensitivity of results to IV selec-
tion. Figure 2f shows the QQ plots of negative log base 10 of p-values
using 5 × 10−4 as the IV selection threshold. The QQ plots using other
thresholds and only independent IVs were provided in the Supple-
mentary Figs. 13–15. In all scenarios, MR-CUE had the highest power.
MR-LDP also had high powers but suffered from inflated type I error
rates as shown in both simulations and negative control analyses.
Figure 2g shows the QQ plots of positive control for MR-CUE using
correlated and independent IVs, respectively. We observed a sub-
stantial power gain of the proposed MR-CUE with correlated IVs and
with relaxed IV selection thresholds. Last, we evaluated whether MR-
CUE could distinguish causal relationship from reverse causality.
Reverse causality occurs when there exist IVs affecting the exposure
and outcome traits through some shared confounding factors. Since
MR-CUE is capable of identifying IVs with CHP effects, it is expected to
identify the direction of true causal effect and reduce false positive
findings due to reverse causality. To examine this, we simulated data
with a causal effect from a trait A on a trait B (βA→B ≠0), and tested for a
reverse causal effect from B on A (B→A) using MR-CUE and other
methods. The simulation details were provided in the Methods Sec-
tion. In all scenarios, we fixed the heritability for exposure and out-
come at 0.3 and 0.25, respectively. For each simulation replicate, we
applied the aboveMRmethods for assessing the causal effects in both
directions. We evaluated and compared the powers for detecting the
true causal effect of exposure A on outcome B, while also compared
the type I error rates for the reverse causal effect of outcome B on
exposure A. Figure 2h shows the ROC curves using 100 simulated
replicates at varying significance thresholds. MR-CUE, CAUSE, GRAP-
PLE, and MR-Clust could distinguish causal effects from reverse cau-
sation in all simulations, while other methods cannot.

Results from other considerations, including non-linear con-
founding effects, binary outcome, the impact of different proportions
in IVs with CHP effects, and a sparse vector for UHP in reverse causa-
tion, showed similar conclusions and can be found in Supplementary
Figs. 9–12.

Examining the effects of interleukin6onmultiple traits/diseases
implies shared genes and pathways as sources of CHP
Interleukin 6 (IL-6) is a key inflammatory cytokine, and has both pro-
and anti-inflammatory properties. It plays an important role in
immune-related processes and pathways25. Here we applied MR-CUE
and other MR methods to evaluate the causal effects of IL-6 on 27
complex traits and diseases (Supplementary Data 1c). The soluble IL-6
receptor (sIL6R), a negative regulator of IL-6 signaling, has been sug-
gested to affectmany complex traits and diseases including lipid levels
(e.g., high-density lipoprotein cholesterol, HDL-c), both severity and
susceptibility of COVID-19, heart diseases (e.g., atrial fibrillation, AF),
autoimmune diseases (e.g., Crohn’s disease, CD), and others25,26. We
analyzed those complex traits/diseases and other diseases that may
not be affected by IL-6. Supplementary Table 3 and Supplementary
Data 2a summarize the p-values and the estimated causal effects for
MR-CUE and other methods.

IL-6 is a multifunctional cytokine and is highly polygenic with a
heritability estimate of up to 61%27. In addition to estimating the causal
effects of IL-6, we further obtained the posterior probabilities of IVs
having CHP effects on each of the 27 outcomes, Pr(ηl = 1∣data), from
eachchromosome clustered inblocks. In Fig. 3a right panel, weplotted
the strengths of CHP effects for IVs across all chromosomes for 27
outcomes, with estimated causal effects shown in the very right col-
umn. In Fig. 3a left panel, we also plotted the genetic correlations
among 27 outcome traits estimated by LDSC28. From the heatmap, we
observed that traits in high genetic correlations tend to have similar or
dependent estimated causal effects of IL-6, e.g., COVID19 severity and
susceptibility; any stroke (AS), any ischemic stroke (AIS), and cardi-
oembolic stroke (CES). Those outcomes also presented similar
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patterns of CHP effects. Note that the strong correlation between
COVID19 susceptibility and severity may be artificial due to selection
bias, since people with more severe COVID19 infection are also more
likely to be diagnosed with COVID19. On the other hand, traits inmild-
to-moderate genetic correlations, e.g., bone mass density (BMD),
blood urea nitrogen (BUN), major depressive disorder (MDD), bipolar
disorder (BIP), and schizophrenia (SCZ), may not share causal effect
estimates but could still share CHP effect patterns. CHP effects could
be present when there are no causal effects.

We further identified the IVs with significant CHP effects, Pr(ηl =
1∣data) > 0.8, and examined the genes in cis (1MB distance) and being
associated with those IVs (p-value < 0.05). The identified genes and
gene sets may shed light on the shared pathways between IL-6 and the
examined complex outcomes. In Fig. 3b, we plotted the heatmap of
selected cis-genes associated with at least one IV affected by CHP
across multiple outcomes, with color indicating the strength of the
most significant association of the gene and its cis-IVs with CHP. There
were many genes involved in the same pathways and being identified
as IV-associated shared factors across multiple outcomes. Those

shared genes may partially explain the observed genetic correlations
among those 27 traits/diseases in Fig. 3a (left panel). Specifically, MR-
CUE identified 13 S100 genes encoding S100 proteins located in the
chromosome 1q21 region. The S100 proteins belong to a family of
calcium-binding cytosolic proteins and have a broad range of intra-
cellular and extracellular functions. The extracellular S100 proteins
play a crucial role in the regulation of immune homeostasis, post-
traumatic injury, and inflammation29. S100 proteins trigger inflamma-
tion through their interactions with receptors for RAGE and TLR430.
S100A12 has been shown to induce the production of pro-
inflammatory cytokine IL-6 and IL-8 in both a dose-dependent and
time-dependent manner29. Additionally, S100 proteins play a sig-
nificant role to the development of chronic inflammatory and auto-
inflammatory diseases31,32. MR-CUE also identified some genes in cor-
nified envelope pathway, SPRR family and IVL. These genes together
with S100 genes constituted the epidermal differentiation complex
that are essential for epidermal differentiation, building the first-line
defense against external assaults and protecting our bodies from
dehydration33. Genes in ATPase complex were identified to play a

Fig. 3 | MR-CUE analysis of IL-6 on multiple traits/diseases. a (Left panel) The
heatmap of the estimated genetic correlations (ρg) among the 27 examined out-
comes with IL-6 as exposure. The genetic correlation p-values are from two-sided
LDSC tests28 withoutmultiple testing adjustment. (Right panel) The heatmap of the
estimated strengths of CHP, �log10ð1� Pr ðηl = 1ÞÞ, for selected IVs across all
chromosomes for the 27 outcomes. The p-values on the right bar indicate the
significance of the causal effects of IL-6 on the examined outcomes, and are from

two-sided MR-CUE tests without multiple testing adjustment. b The heatmap of a
partial list of cis-genes that were significantly associated with at least one IV
affected byCHP acrossmultiple outcomes, with color indicating the strength of the
most significant association for each gene. Cis-associations were assessed using
blood tissue samples from the Genotype-Tissue Expression (GTEx) project for IVs
with estimated CHP effect, with nominal p-values from two-sided Pearson
correlation tests.
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shared role as well. Existing literature34 reported that the over-
expression of KAT5 gene potentiated transcription of downstream
antiviral genes including IL-6. Other works35 reported that histone
methyltransferase ASH1L suppresses TLR-induced IL-6 production.

The above analysis also showed that different IVs with CHP effects
may be involved in multiple pathways entailed by multiple sources of
IV-associated confounders. The confounding effect on outcome could
be IV-specific. MR-CUE allows the estimation of an overall CHP effect
while accounting for IV-specific variation/perturbation to confounders
and improves the estimation of CHP. By closely examining the IVswith
CHP effects and their cis-associated genes, we identified genes and
gene sets that were highly inter-connected as suggested sources of IV-
associated confounders and further informed potential shared genetic
etiology among the traits examined.

MR-CUE informs type 2 diabetes-related pathways for multiple
risk factors across two populations
We applied MR-CUE to each exposure-T2D trait pair and separately
estimated the causal effect from each exposure on T2D risk in the
European and East Asian populations. Type 2 diabetes (T2D) is a form
of diabetes characterized by high blood sugar, insulin resistance, and
relative lack of insulin36. T2D is high polygenic and has a complex
etiology37,38. Examining multiple potential risk exposures for T2D may
reveal common patterns in the etiology for related factors while also
presenting unique characteristics for different types of factors.
Established risk factors for T2D include both lifestyle factors, such as
overweight and obesity, andmedical conditions39. We also considered
other exposure traits, including lipid levels, e.g., TG and high-density
lipoprotein cholesterol (HDL-c), blood cell parameters, e.g., counts for
red blood cells (RBC) and white blood cells (WBC), insulin-resistance-
related factors, e.g., fasting insulin (FI), fasting glucose (FG) andHbA1c,
andothers.We examined 29 and 14 exposures for T2D in Europeanand
East Asian populations, respectively. The full list of exposure traits/
diseaseswas provided in the SupplementaryData 1d, e. Supplementary
Tables 4 and 5 and Supplementary Data 2b, c summarize the p-values
and the estimated causal effects for MR-CUE and other methods. We
further pulled the results from MR-CUE and the estimated sets of IVs
with CHP across analyses of different exposures to examine shared
confoundings and mechanisms in both populations. Some exposures
for T2D are significant in both populations, such as obesity and blood
cell parameters. Obesity is a well-known risk factor for T2D and the
associations of blood cell parameters and T2D were also reported in
many studies40–42. HbA1c was also identified by MR-CUE in both
populations and its association with hypoglycemia was reported in a
previous study43. Some established T2D risk factors, including insulin
resistance, insulin-resistance-related factors, and other obesity factors,
have genetic-association summary statistics in only the European
population, and thus the cross-population comparison was not pre-
sented. MR-CUE reported significant causal effects for those factors in
the European population. Cross-populations analyses using summary
statistics from different populations and ethnic groups still present
many challenges due to the substantially varying LD patterns, diffi-
culties in data harmonization, study heterogeneity and others. More-
over, only a proportion of the causal variants and genes for complex
traits/diseases might be shared across populations, and the risk
exposures for a complex disease could also differ by population. MR-
CUE is robust in cross-population analyses as it offers two layers of
inference – it obtains the causal effect estimation using IVs not affec-
ted by IV-associated confounders, while also maps the underlying
genes and pathways for IVs affected by confounding.

To further investigate the shared genetic pathways for the 29
and 14 traits in the European and East Asian populations, we obtained
the IVs with significant CHP effects, Pr(ηl = 1∣data) > 0.8. In Fig. 4a, b,
we plotted the strengths of CHP effects for IVs across chromosomes
in both European and East Asian populations, respectively.

In general, exposures with higher polygenicity tend to have more IVs
with CHP.We further performed pathway analysis based on those IVs
using SNPnexus44 and obtained their enriched pathways, shown in
Fig. 4c, d for European and East Asian populations, respectively. The
significant causal risk factors identified byMR-CUE are similar in both
populations, and the enriched pathways presented some cross-
population similarity as well. MR-CUE identified both metabolism
and immune response pathways for multiple exposures and T2D in
both populations. T2D itself is an inflammatory disease triggered by
disorderedmetabolism45. MR-CUE identifiedmanymetabolic-related
factors, including glycine, fasting glucose, and fasting insulin, having
shared genetic components in metabolism pathway with T2D. Dys-
regulation of lipid metabolism triggers NLRP3 activation leading to
obesity-induced inflammation and insulin resistance46,47. Moreover,
HbA1c that is chemically linked to a sugar was used as a screening
tool to detect early T2D48. Fasting glucose and HbA1c shared many
common pathways in European population (Fig. 4c) while pathways
for HbA1c were similar in both populations. A recent work49 reported
that genetic variants in glutamate cysteine ligase conferred protec-
tion against T2D, while glycine was considered a promising amino
acid for improving metabolic health50. Glutamate and glycine are
both metabolites, and they play critical roles in the metabolism
pathway. Glycine was reported to improve immunity and treat
metabolic disorders in diabetes51, while glutamate was found to be a
key immunomodulator in the initiation and development of T-cell-
mediated immunity52. We also observed that many exposures share
the signal transduction pathway with T2D in both populations. Signal
transduction pathway plays an important role in both red blood cell53

and T2D54,55. Biologically, signal transduction contains insulin
receptor signaling pathway that may mediate the development of
T2D by endoplasmic reticulum stress56. MR-CUE assessed the causal
effect of each risk exposure on T2D risk, while other T2D-related
exposures are potential confounders and may contribute to the CHP
effect. An alternative and complementary analysis may be using a
multivariable MR method to jointly examine the effect of multiple
exposures. Most existing multivariable MRmethods assume no CHP,
i.e., all IV-associated confounders being accounted for, and we did
not proceed this direction.

Discussion
In this work, we propose MR-CUE to obtain causal inference account-
ing for both UHP and CHP in complex and realistic settings. When
there are multiple confounding genes affecting both exposure and
outcome, different IVs may be associated with more than one con-
founder at varying levels of strengths, resulting in both IV-shared and
IV-specific CHP effects. In contrast to existingmethods focusing on IV-
shared CHP effects, MR-CUE also models IV-specific CHP effects, and
estimates the causal effect of exposure on outcome. Moreover, MR-
CUE allows moderately correlated IVs to boost power in MR analyses.
When correlated IVs are included, IV-specific CHP effects may also
arise. Existing methods insufficiently address the issue, while MR-CUE
can obtain unbiased and efficient estimation in the presence of mul-
tiple confounders and/or correlated IVs. MR-CUE simultaneously
quantifies the probabilities of IVs with CHP, and further examines their
cis-associated genes for potential shared genes/pathways/mechanisms
underlying exposure and outcome. With simulation studies and ana-
lyses of negative control outcomes and positive controls, we demon-
strated that MR-CUE can reduce false positives due to reverse
causation, control the type I error rates in the presence of multiple
confounders and correlated IVs; by including correlated IVs, MR-CUE
improves the power of MR analyses; MR-CUE is insensitive to IV
selection threshold; andMR-CUE identifies IVs with CHP at the desired
confidence levels. Tominimizepotential biasdue to thewinner’s curse,
we recommend selecting the IVs first using a third independent
sample57, if possible.
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We studied the causal effects of IL-6 on multiple outcomes. By
further examining the IVs with significant CHP effects and their cis-
associated genes, we highlighted multiple genes that may be shared
(also served as confounders) between IL-6 and some examined traits/
diseases. Those suggested genes included multiple S100 genes and
genes in the cornified envelope pathway, shedding light on the shared
genetic etiology. In another analysis, we applied MR-CUE to study the
effects of multiple putative exposures on T2D risks in both European
and East Asian populations. A cross-population analysis and compar-
ison of multiple risk exposures showed consistent causal effect esti-
mates in both populations. We further examined the IVs with CHP
effects and their enriched pathways. In both populations, it was sug-
gested thatmetabolism and immune response pathways play a central
role in the shared etiologies among multiple putative exposures
and T2D.

MR-CUEpaved theway for future cross-populationMRanalyses to
reduce disparity. Cross-populations MR analyses using summary sta-
tistics from different populations is still challenging due to varying LD
patterns, difficulties in data harmonization, study heterogeneity and
others. MR-CUE is robust in cross-population analyses as it provides
double layers of inference for cross-population comparisons – it

estimates the causal effect of exposure using IVs not affected by IV-
associated confounders, while also maps the underlying genes and
pathways for IVs affected by confounding.

MR-CUE has some caveats that may require further explorations.
First, MR-CUE assumes that all IVs could have potential UHP effect
while only a sparse proportion of IVs have CHP effect. When the pro-
portion is non-sparse, the identification condition may lead to biased
estimation. Second, MR-CUE works for a single exposure and a single
outcome. When the exposure is known to be highly correlated with
other exposures, or when multiple outcomes may often co-occur,
multi-variable MRmethods accounting for both CHP and UHPmay be
considered. Third,MR-CUE requiresmultiple (at least dozens of) IVs to
identify and delineate CHP effects and is not suitable for analyzing
molecular risk exposures such as gene expression levels. Last, MR-CUE
identifies the IVs with significant CHP effects, though the mapping of
cis-associated genes/pathways from those identified IVs is still not an
automated process. We are working on improving the automation of
this step.

When using MR to infer causation, caution should always be
exercised. By leveraging GWAS summary statistics from large genetic
consortia or biobank-sized studies, MR analysis is empowered. On the

Fig. 4 | MR-CUE analysis of exposure-T2D trait pairs. a, b The heatmaps of the
estimated strengths of CHP, �log10ð1� Pr ðηl = 1ÞÞ, for selected IVs across all
chromosomes for 29 and 14 exposures for T2D in the European and East Asian
populations, respectively. The p-values are calculated based on two-sided MR-CUE
tests without multiple testing adjustment. c, d The heatmaps of enriched pathways

for identified IVswith CHPby exposure in the European and EastAsian populations,
respectively. The p-values are calculated based on one-sided Fisher‘s exact tests
without multiple testing adjustment. The blue y-axis in c, d represent the common
pathways of European and East Asian populations.
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other hand, insights are still limited regarding potential subgroup
effects, indirect effects from different mediators between exposure
and outcome, and potential exposure-mediator interactions. Further
integration of MR with mediation analyses could be valuable for the
development of prevention and treatment strategies towards preci-
sion medicine.

Methods
MR-CUE model for independent IVs
To estimate the causal effect in the MR-CUE model, we use the mar-
ginal effect size and standard error estimates from GWASs for expo-
sure (X) and outcome (Y) diseases/traits as input. Let fbγk ,bsγk g denote
the IV-to-exposureeffect size and its standard error for IV k. Let fbΓk ,bsΓk g
denote the IV-to-outcome effect size and standard error. Let γk and Γk
be the true marginal effect size of IV k for traits X and Y, respectively.
For independent IVs, we model the distribution for the estimated
effect sizes in both exposure and outcome diseases/traits using the
following independently and identically distributed (i. i. d. ) normal
distributions,

bγk ~N ðγk ,bs2γk Þ, and bΓk ~N ðΓk ,bs2Γk Þ: ð3Þ

The proposed MR-CUE models the IV-to-outcome effect as a
function of IV-to-exposure, andUHP andCHP effects using Eq. (2),with
UHP effects i. i. d. as θk ~N ð0,σ2

θÞ. The IV-to-exposure effect (γk) and
the CHP effect (αk) are correlated, and i. i. d. with a bivariate normal
distribution:

γk
αk

� �
~N 0,

σ2
γ, ραγ σγσα0

ραγ σγσα0
, σ2

α0

 ! !
, ð4Þ

where ραγ is the correlation between γk and αk.

The decomposition of CHP effects. From Eq. (4), we reparameterize
γk and αk as follows

γk ~N ð0,σ2
γÞ,αk =ραγ �

σα0

σγ
� γk +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

αγ

q
� σα0 � Zk =

def
δ � γk + eαk , ð5Þ

whereZk follows a standard normal distribution, Zk ~N ð0,1Þ and Zk⫫γk,
and δ =ραγ

σα0
σγ
. Equation (5) decomposes the CHP effect αk into two

parts, with one being proportional to γk and the other part being
independent of γk, i.e., eαk⫫γk. The decomposition in Eq. (5) can also be
viewed as a linear regression of αk regressed on γk with eαk being the
residuals. Let eαk ~N ð0,σ2

αÞ. We call eαk as the orthogonal projection of
CHP. We can further parameterize the effect size of IV-to-outcome for
IV k as in Eq. (2). Therefore, identifying the IVs with CHP effects in Eq.
(2) is equivalent to identifying the IVs with non-zero projected CHP,
namely eαk ≠0. The estimation of causal effect β1 is based on IVs
with eαk =0.

We further introduce a latent indicator ηk for each IV k, with ηk = 1
for IVs with non-zero CHP effects. We impose the following spike-slab
prior16,58 on eαk :

eαk ~
N ð0,σ2

αÞ, ηk = 1

δ0ðαkÞ, ηk =0,

(

where δ0 denotes the Dirac delta function at zero, and ηk follows a
Bernoulli distribution with ηk ~ω

ηk ð1� ωÞ1�ηk . Then, Eq. (2) can be
written as

Γk ∣β1,β2,γk ,ηk ,τ
2
1 ,τ

2
2 ~

N ðβ1γk ,τ
2
1 Þ, ηk =0

N ðβ2γk ,τ
2
2Þ, ηk = 1,

(
ð6Þ

where τ21 = σ
2
θ for IVs with potential UHP only and τ22 = σ

2
θ + σ

2
α with both

potential UHP and CHP. Following existing literature13,14, our model
also assumes that all IVs could have potential UHP while only a sparse
proportion of IVs have CHP. As a consequence of the assumption, the
variability of Γk is larger for the β2 group of IVs than the β1 group
because of the existence of eαk . Thus, in Eq. (6), τ22 > τ

2
1 . Since both τ21

and τ22 are model parameters, we can obtain their estimates using
MCMC and use them to identify β̂1 (see Supplementary Materials).

To promote the computational efficiency in low-signal-noise-ratio
regime, we expand the original distribution (6) as follows59,60:

Γk ∣β1,β2,γk ,ηk ,τ
2
1 ,τ

2
2,ξ

2 ~
N ðβ1γk ,ξ

2τ21 Þ, ηk =0

N ðβ2γk ,τ
2
2Þ, ηk = 1,

(
ð7Þ

where ξ 2 is an expanded parameter with a non-informative prior. By
combing Eqs. (3) and (7), we build the Bayesian hierarchicalmodelwith
conjugate priors for hyper parameters, σ2

γ ~ IGðaγ,bγÞ, τ21 ~ IGðaτ1,bτ1Þ,
τ22 ~ IGðaτ2,bτ2Þ, and ω ~Beta(a, b).

Accounting for LD
We expand theMR-CUEmodel to allow for correlated IVs bymodeling
their LD structure. We model the estimated effect sizes in both expo-
sure and outcome diseases/traits with approximated multivariate
normal distributions61 as follows,

bγ∣γ,bR,bSγ ~ N ðbSγ
bRbS�1

γ γ,bSγ
bRbSγÞ,bΓ ∣Γ ,bR,bSΓ ~ N ðbSΓ

bRbS�1

Γ Γ ,bSΓ
bRbSΓÞ,

ð8Þ

where bγ = ½bγ1, . . . ,bγp�T and bΓ = ½bΓ1, . . . ,bΓp�T are vectors for the marginal
effect sizes in exposure and outcome diseases/traits, respectively;bSγ = diag ð½bsγ1 , � � � ,bsγp �Þ and bSΓ = diag ð½bsΓ1 , � � � ,bsΓp �Þ are the corre-
sponding diagonal matrices for standard errors; and bR 2 Rp×p is the
estimated correlation matrix among all selected IVs. In the approxi-
mated distributions in Eq. (8), all quantities except for bR can be
obtained from summary-level GWAS results while bR is estimated using
an independent reference panel data.

Estimating LD matrix from a reference panel. To estimate the LD
matrix, we used independent reference panel data from the following
sources: UK10K Project (Avon Longitudinal Study of Parents and
Children, ALSPAC62, and TwinsUK63) merged with European-ancestry
samples in 1000 Genome Project Phase 364. There are 4284 individuals
in total. We conducted strict quality control for the reference data
using PLINK65 and GCTA66. We removed the individuals with genotype
missing rates greater than 5%, and further removed one pair of indi-
viduals that have genetic relatedness larger than 0.05. Since both
ALSPAC and TwinsUK cohorts contain non-European samples, we
further performed the principal components analysis (PCA)67 followed
by the analysis of hierarchical clustering on principal components
(HCPC)68 to extract and restrict the analysis to samples from European
ancestries. After data pre-processing, roughly 3700 samples were
retained as the reference panel data.

Often it is useful to define approximately independent LDblocks a
priori. Here we used LDetect69 based on an efficient signal processing
approach for choosing segment boundaries between blocks. Conse-
quently, LDetect partitioned the entire genome into 1703 and 1445
independent blocks for European and Asian populations, respectively
(http://bitbucket.org/nygcresearch/ldetect-data). For each LD block,
we calculated the empirical correlation matrix and further applied a
simple shrinkage correlation estimator70 to obtain

bRðlÞ
= λbRðlÞ

emp + ð1� λÞIðlÞ, ð9Þ
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where bRðlÞ
emp 2 Rpl ×pl was the empirical correlation matrix for the l-th

block in the panel data and λ ≥0 was a shrinkage parameter. By
obtaining all bRðlÞ

s, l = 1,…, L, we could further obtain bR = diag ðbRðlÞÞ 2
Rp×p with

PL
l = 1 pl =p. Here we fixed the shrinkage parameter λ

at 0.858.

Agroupspike-slabprior. For IVs inmoderate-to-strong LD, if there is a
single variant k with a non-zero CHP effect, the CHP effect for other
nearby variants in the block would be also non-zero. In our analyses,
genetic variants across the genome can be partitioned into indepen-
dent blocks. IVs from different blocks could be roughly taken as
independent. Thus, the projected eαk is estimated in a group manner.
We introduce a group-level latent status ηl, indicating whether IVs
within the l-th block having non-zero CHP effects and assigning a
group-level spike-slab prior as follows:

eαlk ~
N ð0,σ2

αÞ, ηl = 1

δ0ðαlkÞ, ηl =0,

(
ð10Þ

where ηl = 1 implies the IVs within the l-th block having non-zero
projected CHP effects and ηl = 0 means the projected CHP effects
being all zero for IVs in the block. Here, ηl is a Bernoulli random
variable with probability ω being 1, ηl ~ω

ηl ð1� ωÞ1�ηl .
Considering IVs in LD, we have the following mixture distribution

for Γlk that is similar to Eq. (7):

Γlk ∣β1,β2,γlk ,ηl ,τ
2
1 ,τ

2
2,ξ

2 ~
N ðβ1γlk ,ξ

2τ21 Þ, if ηl =0

N ðβ2γlk ,τ
2
2Þ, if ηl = 1:

(
ð11Þ

Accounting for sample overlap
When IV-to-exposure and IV-to-outcome summary statistics are taken
from biobank-sized or consortia-based GWASs with potential over-
lapping samples, we need to account for the potential additional cor-
relations. To allow overlapping samples in GWAS for both diseases/
traits,we could rewrite thedistribution for summary statistics in Eq. (8)
as a joint distribution and propose the following Bayesian hierarchical
model for correlated IVs with overlapping samples,

bγbΓ
 !

~N
bSγ
bRbS�1

γ γbSΓ
bRbS�1

Γ Γ

0@ 1A,
bSγ 0

0 bSΓ

 !
Re � bR� � bSγ 0

0 bSΓ

 !0@ 1A
Γlk ∣β1,β2,γlk ,ηl ,τ

2
1 ,τ

2
2,ξ

2 ~
iid N ðβ1γlk ,ξ

2τ21 Þ
n oð1�ηl Þ N ðβ2γlk ,τ

2
2Þ

� 	ηl ,

γlk ∣σ2
γ ~
iidN ð0,σ2

γÞ, ηl ∣ω ~
iid

ωηl ð1� ωÞ1�ηl ,

σ2
γ ~ IGðaγ,bγÞ, τ21 ~ IGðaτ1,bτ1Þ, τ22 ~ IGðaτ2,bτ2Þ,

Prðξ2Þ / 1
ξ2
, ω ~Betaða,bÞ,

ð12Þ

where⊗ denote the Kronecker product and Re =
1 ρe
ρe 1


 �
is the cor-

relationmatrix that accounts for sample overlap. Here, the correlation
due to sample overlap ρe can be estimated using summary statistics
among independent variants with no associations to both exposure
and outcome diseases/traits.

Since the estimated LD matrix is block-diagonal, the resulting
Gibbs sampler can be performed in a parallel manner for each block.
The algorithmic details are given in the Supplementary Materials.

Generation of summary statistics in the simulation studies
We generated the summary statistics using simulated individual-level
data. We first simulated genotypes Gx 2 Rnx ×p,Gy 2 Rny ×p and Gr 2
Rnr ×p for both exposure and outcome as well as for an independent
reference data, respectively, where nx, ny, and nr were the corre-
sponding sample sizes and p was the total number of IVs. We set the

number of blocks L to be 100 or 200, and the number of IVs within a
block to be 10, respectively. Correspondingly, the number of IVs was
either 1000 or 2000. For all simulations, we considered nx = 50,000,
ny = 50,000 and nr = 4000.

We then generated a data matrix from a multivariate normal dis-
tribution N ð0,ΣðrÞÞ, where r∈ {0.4, 0.8} represented the auto-
regressive correlation among IVs. We simulated genotype matrix by
categorizing data matrices into dosage values {0, 1, 2} according to
minor allele frequency that is uniformly distributed in [0.05, 0.5]. We
then considered the following structural model to generate individual-
level data

xx =Gxγ +Uxψx + ϵxx ,

xy =Gyγ +Uyψx + ϵxy ,

y=β1xy +Gyα +Gyθ+Uyψy + ϵy,

ð13Þ

where Ux 2 Rnx ×q and Uy 2 Rny ×q are the matrices for q confounders
in the samples from IV-to-exposure and IV-to-outcome, respectively,
ψx 2 Rq× 1 andψy 2 Rq× 1 are the corresponding vector of coefficients,
xx and xy are exposure traits in two samples, ϵxx 2 Rnx × 1, ϵxy 2 Rny × 1,
and ϵy 2 Rny × 1 are the random errors, and β1 is the causal effect of
interest. In all simulations, we considered q = 50 and eachcolumnofUx

and Uy was sampled from a standard normal distribution. The
coefficients of these confounders, ψx and ψy, were sampled from a
bivariate normal distribution N ð0,ΣψÞ, where Σψ was a two-by-two
matrix with diagonal elements of 1 and off-diagonal elements of 0.8.
For CHP effects, we assumed γk and αk following a bivariate normal
distributionN ð0,ΣðραγÞÞ. We considered αk to be sparse, i.e., only 10%
of αk was sampled from the bivariate normal distribution and the
others were zero. For UHP, we assumed θk to be dense and follow an
independent normal distribution, N ð0,σ2

θÞ.
We further performed the single-variant analysis to obtain sum-

mary statistics, fbγk ,bsγk g and fbΓk ,bsΓk g,∀ k = 1,…, p, for both exposure

and outcome, respectively. In the simulation study, we controlled the

magnitudes for γ, α and θ using h2
γ =

varðβ1GyγÞ
varðyÞ , h2

α =
varðGyαÞ
varðyÞ and

h2
θ =

varðGyθÞ
varðyÞ , respectively. We considered h2

γ =0:1 and varied h2
θ 2

f0:02,0:05g and h2
α 2 f0:05,0:1g to evaluate the performance of MR-

CUE in selecting/identifying IVs with CHP effects and in the control of

type I error rates. To further examine the power, we varied h2
γ in a

sequence of values from 0 to 0.1 while fixing other parameters.

Generation of summary statistics for reverse causation analysis
We considered the following structural model to generate individual-
level data that is similar to existing work13:

xx =Gxγ + ϵxx
, xy =Gyγ + ϵxy , y=β1xy +Gyθ+ ϵy, ð14Þ

where γ and θ are from two independent normal distributions. In this
simulation, we first controlled the heritability of exposure and out-
come, denoted as h2

x and h2
y , respectively. We further assumed that

20% of the outcome heritability, h2
y , can be explained by the causal

effect (β1) of exposure on outcome. Thus, we have three quantities
below

h2
x =
def varðGxγÞ

varðxxÞ
, h2

y =
def varðβ1Gyγ +GyθÞ

varðyÞ and
varðβ1GyγÞ

varðyÞ =
h2
y

5
:

We set h2
y =0:25, h

2
x =0:3, and only 5% of γ being non-zero. We

fixed r =0.4,p = 2000, and ραγ =0.2. To examine reverse causality, we
appliedMR-CUE andothermethods to assess the causal effects in both
directions for 100 simulated replicates. By varying significance
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thresholds, we obtained the ROC curves for true positives vs. false
positives averaged over the 100 replicates.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The reference panel is the merged genotype data from UK10K and
1000 Genome Project Phase 3, available for download from the Eur-
opeanGenome-Phenome Archive (https://www.ebi.ac.uk/ega/) with ID
EGAD00001000776. The LD estimates using UK10K genotype data for
the list of SNPs from HapMap Project Phase 3 (HapMap3) can be
download at https://zenodo.org/record/7152063. All GWAS summary
statistics used in this study are publicly available. GWAS summary
statistics for IL-6 are available at http://www.phpc.cam.ac.uk/ceu/
proteins/. GWAS summary statistics for T2D in the European popula-
tion can be obtained at http://diagram-consortium.org/downloads.
html. GWAS summary statistics for T2D in the East Asian population
can be accessed here https://blog.nus.edu.sg/agen/summary-
statistics/t2d-2020/. Other summary statistics are publicly available
from the studies as referenced in Supplementary Data 1.

Code availability
The MR-CUE method is implemented in an open-source, publicly
available R package that is available at https://github.com/
QingCheng0218/MR.CUE71. The code to reproduce the analysis can
be found at https://github.com/QingCheng0218/MR.CUE/tree/main/
simulation.
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